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Majority-vote model on random graphs
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The majority-vote model with noise on Erdds-Rényi's random graphs has been studied. Monte Carlo simu-
lations were performed to characterize the order-disorder phase transition appearing in the system. We found
that the value of the critical noise parametgris an increasing function of the mean connectivitpf the
random graph. The critical exponeng& v, y/v, and 1/ were calculated for several values nfand our
analysis yielded critical exponents satisfying the hyperscaling relation with effective dimensionality equal to
unity.
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I. INTRODUCTION This paper is organized in the following way: In Sec. Il

Since Erdés and Rényi's work more than 40 years agd'e describe the isotropic maj_o_rity-vote model With noi_se and
[1,2], intense theoretical research on random graphs has bedjroduce the relevant quantities used in our simulations. In
taking place[3,4]. In particular, models of networks with Sec. Ill we present our results along with a d|scqssmn. And
more complex connectivities than the traditional uncorrefinally, in the last section we present our conclusions.
lated random graphs have been introdug6] and used to
describe many systems in nature and sodigsgl.

Arandom graph is a set &f vertices(siteg connected by Il. THE MODEL AND COMPUTATIONAL METHOD
B links (bonds. The probabilityp that a given pair of sitesis  The isotropic majority-vote model with noise is defined
connected by a bond {s=2B/N(N~-1). The connectivity of  py 5 set of spin variable§r;}, where each spin is associated
a site is defined as the total number of bonds connected to iith one vertex of the random graph and can have the values
that iski=2c;, wherec;=1 if there is a link between the 1 The system dynamics is as follows: For each spin we
sitesi andj andc;=0 otherwise. Random graphs are com- yotermine ‘the sign of the majority of its neighboring spins,
Pletely characterized by_tr_\e mean number of_bqnds Per Sitgyat is, all the spins that are linked to it. With probabiliy
or th? average connectlw_uy_:_ p(l\_l—1). In the limit I_\l_m ._the spin takes the opposite sign of the majority of its neigh-
the distribution of connectivities is given by the Poisson d's'bors, and it takes the same sign with probability-g). The

tribution. de :
probability g is known as the noise parameter.
For values ofz<1 the random graph does not have a The probability of a single spin flip is given by

percolating clustef2,10]. There are a few disconnected clus-
ters and there is no long-range order on such systems. For 1 ki

1<z=<4 there is a percolating cluster, but there are a few Woy) == 1-(1-29)0iS| X aius] | (1)
small islands disconnected from the giant cluster. These 2 &1

small islands do not contribute to the system dynamics an%hereS(x):sgr(x) if x#0 andS(0)=0, and the summation
so they are excluded from our simulations. For valueg of is over all thek; spins connected to the spin at site
1

>4 almost all the sites belong to the giant cluster, so no sites 1, study the critical behavior of the model we consider

need to be excluded from the dynamics. the magnetizatioM, the susceptibilityyy, and the Binder’s

Our goal in this work is to identify the critical character of ,h_order cumulanty,. These quantities are defined by
the majority-vote model with noise on random graphs. Pre-

vious works on the majority-vote model consider the spins N

either on regulad-dimensional lattice§11,12 or on small- Mn(@) = ((M)p)c = N > o : 2
world networkg 13,14 interpolating between regular lattices 1 T/ C

and random graphs. We use Monte CaiMdC) simulations

and standard finite-size scaling techniques to determine the (@) = N[(MP)r)e = ((m)p)E], 3
critical noise parametey., as well as the exponengs v, y/ v

and 1/v for several values of the mean connectivitpf the UMM

graph. We also use mean-field approximation to obtain the Un(g)=1 —m. 4

phase diagram in thg.—z space and make a comparison
with the corresponding phase diagram that follows from oumvhereN is the number of vertices of the random graph with
simulations. fixed z, (...)r denotes time averages taken in the stationary
regime, and...)c stands for configurational averages.
These quantities are functions of the noise parameter
*Electronic address: luizfc@df.ufpe.br and, in the critical region, satisfy the following finite-size
"Electronic address: brady@df.ufpe.br scaling relation$11]:
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FIG. 1. Magnetization and susceptibility as a function of the
noise parameteq, for N=10 000 sites. From left to right we have

FIG. 2. Binder’s fourth-order cumulant as a functiongfind
z=2, 4, 6, 8, 10, 20, and 50.

five values of system sizM. In part(a) we havez=8 and in part

(b) z=20.
Mn(@) = NZ"M(NY7e), (5) y
nodes and several values of the average connectivity
(@) = NV"’S((Nl"’s), 6) part (a) each curve foMy, for a given value ofN and z,

clearly indicates that there exists a phase transition from an

ordered state to a disordered state. We also notice that the

transition occurs at a value of the critical noise parameter

which is an increasing function of the mean connectizitf

the random graph. In pakb) we show the corresponding

behavior of susceptibilitiegy. The value ofg where yy has

a maximum is here identified ag(N). In Fig. 2 we plot the

Binder’s fourth-order cumulant)y for different values olN

and two distinct values . The critical noise parametey,

(8)  for a given value ofz, is estimated as the point where the
curves for different system sizéé intercept each other. In

where the constartt is close to unity. The above relation is ipig way we have obtained the phase diagram shown in
used to determine the exponentvldnd also to provide a Fig. 3

check for the values of, obtained from the analysis of the = “The phase diagram of the majority-vote model on random

Binder’'s cumulant[Eqg. (7)]. Finally,_ we have checl_<ed graphs shows that for a given gragfixed z) the system
whether the calculated exponents satisfy the hyperscaling hYjecomes ordered fay<q., whereas it has zero magnetiza-

Un(g) = UNYg), @)

wheree=g—q.. From the size dependence Mf, and yy we
obtained the exponenf¥ v and y/ v, respectively. The maxi-
mum value of the susceptibility also scalesN¥’. More-
over, the value ofj for which yy has a maximumg(N), is
expected to scale with the system size as

0e(N) = g+ bN,

pothesis tion for g=q.. We notice that the increase of, is more
2B/v+ ylv =Dy (9) pronounced for small values af The error bz_irs irq9 (_see
Table |) are smaller than the symbols. In Fig. 3, it is also
in order to get the effective dimensionali9;, for several
values ofz. 04
We have performed Monte Carlo simulations on random R
graphs with various values of mean connectivityFor a 5, Mot Carlo P
givenz, we used systems of sidé=1000, 1750, 2500, 5000, 03l ,.—" i
and 10 000. We waited 8000 Monte Carlo stépECS) to e
make the system reach the steady state, and the time aver- g«"
ages were estimated from the next 4000 MCS. In our simu- 902 4 |
lations, one MCS is accomplished after all tNespins are ’ é
updated. The simulations were performed using the standard &
C random number generator. For all sets of parameters, we !
have generated ten distinct random networks, and we have 01 ° i
simulated ten independent runs for each distinct graph. ¢
-]
0S¢ 17 16 20

Ill. RESULTS AND DISCUSSION

In Fig. 1 we show t'h.e dependence _of the magnetization FIG. 3. The phase diagram, showing the dependence of the criti-
My and the susceptibilityyy on the noise parameter, ob- cal noise parametey, on the average connectivity obtained from
tained from simulations on random graphs wi=10 000  MC simulations and from MF approximation.
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TABLE |. The critical noiseq,, the critical exponents, and the effective dimensiondly;, for random

networks with mean connectivity

PHYSICAL REVIEW E/1, 016123(2009

z (o} Blv vl vl P 1/v Deif
2 0.0661) 0.242) 0.51(3) 0.522) 0.485) 0.997)
3 0.13496) 0.2332) 0.5292) 0.5297) 0.379) 1.001)
4 0.1811) 0.2426) 0.54(1) 0.5156) 0.597) 1.022)
6 0.24035) 0.2457) 0.5144) 0.50714) 0.446) 1.002)
8 0.27533) 0.2425) 0.51Q9) 0.5103) 0.563) 0.992)
10 0.29984) 0.2591) 0.4835) 0.5025) 0.51(3) 1.001)
20 0.35862) 0.2554) 0.5016) 0.5032) 0.494) 1.01(1)
50 0.41102) 0.2714) 0.4656) 0.4854) 0.395) 1.01(1)
100 0.43683) 0.2674) 0.4677) 0.4794) 0.473) 1.002)

dObtained usingyy(q.). See Eq(6).
PObtained usingy(max.
“Estimated usingy/ v from yn(d).

shown the values ofj, obtained from mean-fieldMF) ap- In Fig. 5@ we display the scalings for the susceptibility
proximation. For small connectivities the MF estimate of at q=q., xn(dc), and for its maximum amplitudeyy(max).
the critical noise parameter is very inaccurate. In particulaiThe exponent ratioy/ v is obtained from the slopes of the
MF theory givesq,=0 for z< 2, whereas our MC phase dia- straight lines. For almost all the values nfthe exponents
gram exhibits an ordered state for all values of the meany/v of the two estimates agree within error dble I). An
connectivity greater than 1. This is in agreement with theincreased means a slight tendency to decrease the exponent
limiting value ofz=1 for the existence of a percolating clus- ratio y/v.
ter and, therefore, the onset of long-range order in the sys- In a similar way, for fixedz the critical exponent 1/ was
tem. However, ag increases the two_estimates get closer.obtained from a plot of Ifig.(N)—q.] versus InN [see Eq.
Thls_|s expected because.MF approximation pecomes morg)]. We used the corresponding valuesggfN) that follow
precise as the number Qf interacting nodes is mcreased._V\{?om the maximum of the susceptibility and the limiting
have also performed simulations for random graphs withajye ofq, which has been obtained from Binder’s cumulant.
higher values of, such asz=50, z=100, andz=1000. The ¢ g5ne of the resulting straight line equals the exponent
corresponding values of the critical noigeot shown in the 4/, The results quoted in Table | indicate thatli$ not a
figure) are smaller than 0.50, which is the limiting prediction monotonic function of the mean connectivity
value as provided by mean-field theory wher-. Figure §b) illustrates the scaling relation fa.(N) given

In F|_g. 4 we plot the_dependence_ of the magnetization a Eqg. (8). The constanb equals the slope of the straight
q=0 W!th the_syst_em size. The straight lines, obtame_d .fromline, whereas the extrapolation of the fitting provides an al-
simulations with different values of the mean connectivity ternative way of determining the critical parametgr We

confirm the scaling of the magnetization according to Eq'have obtained a quite satisfactory agreement between the

(5). The slopes of curves correspond to the exponent ratig : ; ; :
. . ; . alues ofq, determined in this way and the correspondin
Bl v. Our results show that the increasegsfv with zis quite . Ge ! ! IS way ponding
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FIG. 5. (a) Plot of In xn(9.)] and If yny(max ] vs InN. (b) The
dependence of the noise parameig(iN) on system size. The ex-
trapolation gives an independent estimationdgrThe data are for
the case of mean connectivipz 3.

8
In[N]

FIG. 4. IfMy(go)] vs InN. From top to bottomz=2, 4, 6, 10,
20, 50, 100.
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interest to mention earlier simulations of the majority-vote
model on other kinds of networks. Campetsal.[13] inves-
tigated the phase diagram and critical behavior of the
majority-vote model on small-world network§] by rewir-
ing the two-dimensional square lattice. Using a similar pro-
cedure to ours they found critical exponents depending on
the fraction of long-range interactions and satisfying the hy-
perscaling relation wittD.¢=2 (the dimensionality of the
regular latticg. On the other hand, the model which has been
defined on a regular lattice has critical exponents that fall
] into the same class of universality as the corresponding equi-
B 4 librium Ising model[11,12. The results of the present simu-
o 0o A #0009 ] lations show that the majority-vote models defined on a regu-
YT R Y E— . lar lattice, on small-world networks, and on Erdds-Rényi’s
lag N rand_om graphs, belong to different universality glasses.
Finally, we remark that our MC results are quite different
FIG. 6. Data collapsing for five different values b with z ~ 1Om the mean-field estimate®/v=1, y/»=2, and 14=2,
-10. which result inD=4 for the upper critical dimensionality.
This is a reasonable result since for all networks simulated
we are far away from the mean-field picture where every
spin interacts with all the remaining—1 spins.

6 o N=1000
L o N=1750
© N=2500

* N=10000

'S
—T—

M (@N>

|

ones that follow from the analysis of Binder’s cumulant.

In Fig. 6 we show the data-collapse plot for (u)
=My(g)N?", which is a universal function of the combined IV. CONCLUSION

variable u=N""(q-q.). We have also obtained quite good  \We have obtained the phase diagram and critical expo-
data collapse fo(u)=xn(q)N"*. The collapsing of curves nents of the majority-vote model with noise on random
for five different system sizes corroborates the quoted valuegraphs. The second-order phase transition which occurs in
for g, B/v, ylv, and 1h. the model with mean connectivig=>1 has exponents that
Table | resumes the valug¢along with errory of q., the  show a slight variation along the critical line. Nevertheless,
three critical exponentSy/ v was obtained by using two dif- our Monte Carlo simulations have demonstrated that the ef-
ferent scalings and the effective dimensionality of the sys- fective dimensionalityD.¢ equals unity, for all values of.
tem. It is worth to mention that, for afi, the valueD.=1,  This interesting result may suggest that other spin models
which has been obtained from the hyperscaling hypothesidefined on random graphs have exponents which satisfy the
[Eq. (9)], is satisfied when we use both estimate procedurebyperscaling relation witlDg¢=1.
for the exponent ratioy/ v.
There are no previous works studying the majority-vote
model on Erdos-Rényi’s graphs, to allow a direct comparison Luiz F. C. Pereira is supported by CAPES. We acknowl-
of the present results. Yet, for completeness, it would be oédge partial support from CNPq, FINEP, and FACEPE.
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