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The majority-vote model with noise on Erdös-Rényi’s random graphs has been studied. Monte Carlo simu-
lations were performed to characterize the order-disorder phase transition appearing in the system. We found
that the value of the critical noise parameterqc is an increasing function of the mean connectivityz of the
random graph. The critical exponentsb /n, g /n, and 1/n were calculated for several values ofz, and our
analysis yielded critical exponents satisfying the hyperscaling relation with effective dimensionality equal to
unity.
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I. INTRODUCTION

Since Erdös and Rényi’s work more than 40 years ago
f1,2g, intense theoretical research on random graphs has been
taking placef3,4g. In particular, models of networks with
more complex connectivities than the traditional uncorre-
lated random graphs have been introducedf5,6g and used to
describe many systems in nature and societyf7–9g.

A random graph is a set ofN verticesssitesd connected by
B links sbondsd. The probabilityp that a given pair of sites is
connected by a bond isp=2B/NsN−1d. The connectivity of
a site is defined as the total number of bonds connected to it,
that is ki =o jcij , wherecij =1 if there is a link between the
sites i and j andcij =0 otherwise. Random graphs are com-
pletely characterized by the mean number of bonds per site,
or the average connectivityz=psN−1d. In the limit N→`
the distribution of connectivities is given by the Poisson dis-
tribution.

For values ofzø1 the random graph does not have a
percolating clusterf2,10g. There are a few disconnected clus-
ters and there is no long-range order on such systems. For
1,zø4 there is a percolating cluster, but there are a few
small islands disconnected from the giant cluster. These
small islands do not contribute to the system dynamics and
so they are excluded from our simulations. For values ofz
.4 almost all the sites belong to the giant cluster, so no sites
need to be excluded from the dynamics.

Our goal in this work is to identify the critical character of
the majority-vote model with noise on random graphs. Pre-
vious works on the majority-vote model consider the spins
either on regulard-dimensional latticesf11,12g or on small-
world networksf13,14g interpolating between regular lattices
and random graphs. We use Monte CarlosMCd simulations
and standard finite-size scaling techniques to determine the
critical noise parameterqc, as well as the exponentsb /n, g /n
and 1/n for several values of the mean connectivityz of the
graph. We also use mean-field approximation to obtain the
phase diagram in theqc−z space and make a comparison
with the corresponding phase diagram that follows from our
simulations.

This paper is organized in the following way: In Sec. II
we describe the isotropic majority-vote model with noise and
introduce the relevant quantities used in our simulations. In
Sec. III we present our results along with a discussion. And
finally, in the last section we present our conclusions.

II. THE MODEL AND COMPUTATIONAL METHOD

The isotropic majority-vote model with noise is defined
by a set of spin variableshsij, where each spin is associated
with one vertex of the random graph and can have the values
±1. The system dynamics is as follows: For each spin we
determine the sign of the majority of its neighboring spins,
that is, all the spins that are linked to it. With probabilityq
the spin takes the opposite sign of the majority of its neigh-
bors, and it takes the same sign with probabilitys1−qd. The
probability q is known as the noise parameter.

The probability of a single spin flip is given by

wssid =
1

2F1 − s1 − 2qdsiSSo
d=1

ki

si+dDG , s1d

whereSsxd=sgnsxd if xÞ0 andSs0d=0, and the summation
is over all theki spins connected to the spin at sitei.

To study the critical behavior of the model we consider
the magnetizationMN, the susceptibilityxN, and the Binder’s
fourth-order cumulantUN. These quantities are defined by

MNsqd = kkmlTlC =KK 1

N
Uo

1

N

siUL
T

L
C

, s2d

xNsqd = Nfkkm2lTlC − kkmlTlC
2g, s3d

UNsqd = 1 −
kkm4lTlC

3kkm2lTlC
2 , s4d

whereN is the number of vertices of the random graph with
fixed z, k. . .lT denotes time averages taken in the stationary
regime, andk. . .lC stands for configurational averages.

These quantities are functions of the noise parameterq
and, in the critical region, satisfy the following finite-size
scaling relationsf11g:
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MNsqd = N−b/nM̃sN1/n«d, s5d

xNsqd = Ng/nx̃sN1/n«d, s6d

UNsqd = ŨsN1/n«d, s7d

where«=q−qc. From the size dependence ofMN andxN we
obtained the exponentsb /n andg /n, respectively. The maxi-
mum value of the susceptibility also scales asNg/n. More-
over, the value ofq for which xN has a maximum,qcsNd, is
expected to scale with the system size as

qcsNd = qc + bN−1/n, s8d

where the constantb is close to unity. The above relation is
used to determine the exponent 1/n and also to provide a
check for the values ofqc obtained from the analysis of the
Binder’s cumulant fEq. s7dg. Finally, we have checked
whether the calculated exponents satisfy the hyperscaling hy-
pothesis

2b/n + g/n = Deff s9d

in order to get the effective dimensionality,Deff, for several
values ofz.

We have performed Monte Carlo simulations on random
graphs with various values of mean connectivityz. For a
givenz, we used systems of sizeN=1000, 1750, 2500, 5000,
and 10 000. We waited 8000 Monte Carlo stepssMCSd to
make the system reach the steady state, and the time aver-
ages were estimated from the next 4000 MCS. In our simu-
lations, one MCS is accomplished after all theN spins are
updated. The simulations were performed using the standard
C random number generator. For all sets of parameters, we
have generated ten distinct random networks, and we have
simulated ten independent runs for each distinct graph.

III. RESULTS AND DISCUSSION

In Fig. 1 we show the dependence of the magnetization
MN and the susceptibilityxN on the noise parameter, ob-
tained from simulations on random graphs withN=10 000

nodes and several values of the average connectivityz. In
part sad each curve forMN, for a given value ofN and z,
clearly indicates that there exists a phase transition from an
ordered state to a disordered state. We also notice that the
transition occurs at a value of the critical noise parameterqc,
which is an increasing function of the mean connectivityz of
the random graph. In partsbd we show the corresponding
behavior of susceptibilitiesxN. The value ofq wherexN has
a maximum is here identified asqcsNd. In Fig. 2 we plot the
Binder’s fourth-order cumulantUN for different values ofN
and two distinct values ofz. The critical noise parameterqc,
for a given value ofz, is estimated as the point where the
curves for different system sizesN intercept each other. In
this way we have obtained the phase diagram shown in
Fig. 3.

The phase diagram of the majority-vote model on random
graphs shows that for a given graphsfixed zd the system
becomes ordered forq,qc, whereas it has zero magnetiza-
tion for qùqc. We notice that the increase ofqc is more
pronounced for small values ofz. The error bars inqc ssee
Table Id are smaller than the symbols. In Fig. 3, it is also

FIG. 1. Magnetization and susceptibility as a function of the
noise parameterq, for N=10 000 sites. From left to right we have
z=2, 4, 6, 8, 10, 20, and 50.

FIG. 2. Binder’s fourth-order cumulant as a function ofq and
five values of system sizeN. In part sad we havez=8 and in part
sbd z=20.

FIG. 3. The phase diagram, showing the dependence of the criti-
cal noise parameterqc on the average connectivityz, obtained from
MC simulations and from MF approximation.
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shown the values ofqc obtained from mean-fieldsMFd ap-
proximation. For small connectivitiesz the MF estimate of
the critical noise parameter is very inaccurate. In particular
MF theory givesqc=0 for zø2, whereas our MC phase dia-
gram exhibits an ordered state for all values of the mean
connectivity greater than 1. This is in agreement with the
limiting value ofz=1 for the existence of a percolating clus-
ter and, therefore, the onset of long-range order in the sys-
tem. However, asz increases the two estimates get closer.
This is expected because MF approximation becomes more
precise as the number of interacting nodes is increased. We
have also performed simulations for random graphs with
higher values ofz, such asz=50, z=100, andz=1000. The
corresponding values of the critical noisesnot shown in the
figured are smaller than 0.50, which is the limiting prediction
value as provided by mean-field theory whenz→`.

In Fig. 4 we plot the dependence of the magnetization at
q=qc with the system size. The straight lines, obtained from
simulations with different values of the mean connectivityz,
confirm the scaling of the magnetization according to Eq.
s5d. The slopes of curves correspond to the exponent ratio
b /n. Our results show that the increase ofb /n with z is quite
small.

In Fig. 5sad we display the scalings for the susceptibility
at q=qc, xNsqcd, and for its maximum amplitude,xNsmaxd.
The exponent ratiog /n is obtained from the slopes of the
straight lines. For almost all the values ofz, the exponents
g /n of the two estimates agree within error barssTable Id. An
increasedz means a slight tendency to decrease the exponent
ratio g /n.

In a similar way, for fixedz the critical exponent 1/n was
obtained from a plot of lnfqcsNd−qcg versus lnN fsee Eq.
s8dg. We used the corresponding values ofqcsNd that follow
from the maximum of the susceptibility and the limiting
value ofqc which has been obtained from Binder’s cumulant.
The slope of the resulting straight line equals the exponent
1/n. The results quoted in Table I indicate that 1/n is not a
monotonic function of the mean connectivityz.

Figure 5sbd illustrates the scaling relation forqcsNd given
in Eq. s8d. The constantb equals the slope of the straight
line, whereas the extrapolation of the fitting provides an al-
ternative way of determining the critical parameterqc. We
have obtained a quite satisfactory agreement between the
values ofqc determined in this way and the corresponding

TABLE I. The critical noiseqc, the critical exponents, and the effective dimensionalityDeff, for random
networks with mean connectivityz.

z qc b /n g /na g /nb 1/n Deff
c

2 0.066s1d 0.24s2d 0.51s3d 0.52s2d 0.48s5d 0.99s7d
3 0.1349s6d 0.233s2d 0.529s2d 0.529s7d 0.37s9d 1.00s1d
4 0.181s1d 0.242s6d 0.54s1d 0.515s6d 0.59s7d 1.02s2d
6 0.2403s5d 0.245s7d 0.514s4d 0.507s4d 0.44s6d 1.00s2d
8 0.2753s3d 0.242s5d 0.510s9d 0.510s3d 0.56s3d 0.99s2d
10 0.2998s4d 0.259s1d 0.483s5d 0.502s5d 0.51s3d 1.00s1d
20 0.3586s2d 0.255s4d 0.501s6d 0.503s2d 0.49s4d 1.01s1d
50 0.4110s2d 0.271s4d 0.465s6d 0.485s4d 0.39s5d 1.01s1d
100 0.4368s3d 0.267s4d 0.467s7d 0.479s4d 0.47s3d 1.00s2d

aObtained usingxNsqcd. See Eq.s6d.
bObtained usingxNsmaxd.
cEstimated usingg /n from xNsqcd.

FIG. 4. lnfMNsqcdg vs lnN. From top to bottom,z=2, 4, 6, 10,
20, 50, 100.

FIG. 5. sad Plot of lnfxNsqcdg and lnfxNsmaxdg vs lnN. sbd The
dependence of the noise parameterqcsNd on system size. The ex-
trapolation gives an independent estimation forqc. The data are for
the case of mean connectivityz=3.
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ones that follow from the analysis of Binder’s cumulant.

In Fig. 6 we show the data-collapse plot forM̃sud
=MNsqdNb/n, which is a universal function of the combined
variable u=N1/nsq−qcd. We have also obtained quite good
data collapse forx̃sud=xNsqdN−g/n. The collapsing of curves
for five different system sizes corroborates the quoted values
for qc, b /n, g /n, and 1/n.

Table I resumes the valuessalong with errorsd of qc, the
three critical exponentssg /n was obtained by using two dif-
ferent scalingsd, and the effective dimensionality of the sys-
tem. It is worth to mention that, for allz, the valueDeff=1,
which has been obtained from the hyperscaling hypothesis
fEq. s9dg, is satisfied when we use both estimate procedures
for the exponent ratiog /n.

There are no previous works studying the majority-vote
model on Erdös-Rényi’s graphs, to allow a direct comparison
of the present results. Yet, for completeness, it would be of

interest to mention earlier simulations of the majority-vote
model on other kinds of networks. Camposet al. f13g inves-
tigated the phase diagram and critical behavior of the
majority-vote model on small-world networksf5g by rewir-
ing the two-dimensional square lattice. Using a similar pro-
cedure to ours they found critical exponents depending on
the fraction of long-range interactions and satisfying the hy-
perscaling relation withDeff=2 sthe dimensionality of the
regular latticed. On the other hand, the model which has been
defined on a regular lattice has critical exponents that fall
into the same class of universality as the corresponding equi-
librium Ising modelf11,12g. The results of the present simu-
lations show that the majority-vote models defined on a regu-
lar lattice, on small-world networks, and on Erdös-Rényi’s
random graphs, belong to different universality classes.

Finally, we remark that our MC results are quite different
from the mean-field estimatesb /n=1, g /n=2, and 1/n=2,
which result inD=4 for the upper critical dimensionality.
This is a reasonable result since for all networks simulated
we are far away from the mean-field picture where every
spin interacts with all the remainingN−1 spins.

IV. CONCLUSION

We have obtained the phase diagram and critical expo-
nents of the majority-vote model with noise on random
graphs. The second-order phase transition which occurs in
the model with mean connectivityz.1 has exponents that
show a slight variation along the critical line. Nevertheless,
our Monte Carlo simulations have demonstrated that the ef-
fective dimensionalityDeff equals unity, for all values ofz.
This interesting result may suggest that other spin models
defined on random graphs have exponents which satisfy the
hyperscaling relation withDeff=1.
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FIG. 6. Data collapsing for five different values ofN, with z
=10.
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